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Abstract

When the kinetic energy of a flow is dominant, numerical schemes employed can encounter difficulties due to

negative internal energy. A case study with several commonly used conservative schemes (MUSCL, ENO, WENO and

CE/SE) shows that high order schemes may have less ability to preserve positive internal energy (MUSCL and CE/SE),

or present less accurate results (WENO and ENO) when the internal energy to kinetic energy ratio is low. By analyzing

the positivity property for second-order conservative schemes with large fixed CFL number conditions for time step

restriction, this paper proposes the energy consistency conditions for second-order Riemann-solver type schemes and

CE/SE method. According to the said energy consistency conditions, a kinetic energy fix method which limits the

magnitude of kinetic energy relative to the total energy is introduced. The numerical examples show that the kinetic

energy fixed CE/SE method produces reasonable results and keeps positive internal energy for flows with very low

internal energy even when a vacuum occurs.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The gas dynamic problems are usually solved by conservative schemes, in which the internal energy is

used to determine the pressure by subtracting the kinetic energy component from the total energy. For

flows in which the ratio of internal energy to kinetic energy is low, the resulting internal energy obtained

may be negative hence giving rise to negative pressure and thereby invalidating the ensuing computation. A

useful test case to evaluate the ability of a computational method in handling such low internal energy flow

is that of a one-dimensional tube containing a gas having diametrically opposite initial velocities, which is

usually referenced as the ‘‘1–2–3 problem’’ [18]. Einfeldt et al. [3] analyzed the characteristics of low internal

energy flows and proposed the HLLE scheme [6] to solve the ‘‘1–2–3 problem’’. Toro [18] tested and found
that several classic Riemann-solver type schemes can keep the density and internal energy positive and have
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the so called positivity property. Gressier et al. [5] also discussed the positivity conditions of several classical

flux vector splitting schemes.

For high order conservative schemes, even for those constructed based on positive first-order schemes, as
will be shown by a case study in Section 4, may show less ability to maintain positivity or not being able to

obtain results with sufficient accuracy for low internal energy flow problems (or those when the ratio of

internal to kinetic energy is lower than 3). On the positivity property, Linde and Roe [9] discussed about the

positivity conditions for a second order multi-dimensional MUSCL-type scheme while Perthame [11] and

Tang and Xu [17] studied the positivity conditions for second-order kinetic schemes. Perthame and Shu [12]

provided a remarkable theorem which states that, given a first-order positive conservation scheme such as

Godunov and Lax–Friedrichs schemes, one can always build a higher order positive scheme under the

conditions that (a) the cell wall values for numerical flux calculation satisfy positive density and pressure,
and (b) sufficiently small CFL number be utilized to constrain the time step. As a fixed CFL number is

usually employed in practical computation, (c) additional constraints on the interpolation procedure are

needed. Usually, the fixed CFL number permitted in practical computation is considerably small and

therefore greatly decreased the efficiency. On the other hand, to increase the accuracy of computation for

low internal energy flows, Cocchi et al. [2] suggested a second-order non-conservative formulation for the

energy equation to decrease the non-physical temperature increase. However, the non-conservative scheme

may result in an exponential error growth, and it is not known that if this non-conservative formula can

handle flows with even lower internal to kinetic energy ratios. The CE/SE method [1], a non-Riemann-
solver type conservative scheme, introduces less errors when computing for low internal energy flows with

reasonably large CFL number for time step restriction. However, as shown in the case study below, it works

well provided the internal energy of the flows is not very low.

The motivation of this paper stems from the above mentioned difficulties of maintaining positivity and

accuracy preserving for high order schemes when computing for low internal energy flows. We first study

the performances of several different high order conservative schemes (MUSCL, ENO, WENO and CE/SE)

to determine the difficulties that each scheme may face with the decrease of internal energy in the flow. Then

we analyze the positivity properties of second-order Riemann-solver type schemes and the CE/SE method
for the cases with large fixed CFL number for high computational efficiency. Based on these analysis, we

propose the energy consistency conditions, by which a kinetic energy fix method for a general second-order

conservative scheme is introduced. As the CE/SE method is found from the case study to give more ac-

curate results, it is modified with the said kinetic energy fix to compute for several numerical examples for

flows with a large range of low internal energy.
2. Euler equations

Assuming the fluid is inviscid and compressible, the flow is described by Euler equations in one di-

mension as

oU
ot

þ oF ðUÞ
ox

¼ 0; ð1Þ

where U ¼ ðq; qu;EÞT and F ðUÞ ¼ ðqu; qu2 þ p; ðE þ pÞuÞT. The equation of state is defined as

p ¼ ðc� 1Þqe; ð2Þ

where c ¼ 1:4 is the heat ratio for an ideal gas. This set of equations describes the conservation of the
conservative variables: density q, momentum qu and total energy density E ¼ qeþ 1

2
qu2, where e is the

internal energy per unit mass. The ratio of internal energy to kinetic energy can be defined as
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K ¼ 2qE � ðquÞ2

ðquÞ2
: ð3Þ

In a low internal energy flow, the internal energy is close or even smaller than the kinetic energy, i.e. K < 1.

However, the internal energy and density must always be kept positive, i.e. K > 0, to maintain a positive
pressure p from Eq. (2) for a real physical state. As the state is derived from the conservative variables when

solving Eq. (1), we say that the conservative variables are energy consistent when the system possesses a

positive internal energy hence giving rise to a positive pressure. If K < 0, the energy consistency fails, and

negative internal energy and pressure occur.
3. Conservative schemes

3.1. Riemann-solver type

An explicit Riemann-solver type conservation scheme of Eq. (1) on cell j can be written as

�UUnþ1
j ¼ �UUn

j � kðF̂Fjþ1=2 � F̂Fj�1=2Þ; ð4Þ

where �UUn
j and �UUnþ1

j are the cell average values at nth and nþ 1th time steps, F̂Fj�1=2 are numerical fluxes on

the respective cell walls. The scheme is stable under a Courant–Friedrich–Lewy (CFL) time step re-

striction

k ¼ Dt
Dx

<
NCFL

maxðjuij þ ciÞ
; i ¼ 1;N ; ð5Þ

where NCFL < 1 is called CFL number. For a first-order conservative scheme, F̂Fj�1=2 is defined directly based

on the cell average values, i.e.

F̂Fjþ1=2 ¼ F̂F ð �UUj; �UUjþ1Þ; F̂Fj�1=2 ¼ F̂F ð �UUj�1; �UUjÞ: ð6Þ

Several classic conservative schemes, such as Godunov, Lax–Friedrichs, HLLE, have positivity property

under a CFL number condition

NCFL < a0; ð7Þ

where a0 6 1. The positivity property ensures positive density and pressure from �UUnþ1 when �UUn satisfies

positive density and pressure.

A higher order scheme is usually constructed based on a positive preserving first-order scheme, such as

MUSCL is based on Godunov scheme while ENO or WENO are based on Lax–Friedrichs scheme. The

difference is that the F̂Fj�1=2 in a high order scheme are defined with the values of the forward and backward
conservative variables approximated by a piecewise function UnðxÞ on the walls of cell, say xj�1=2 and xjþ1=2.

Specifically, the second-order profiles can be written as

q ¼ �qqj þ kqx; qu ¼ ð �ququÞj þ kqux; E ¼ �EEj þ kEx; ð8Þ

in which the cell average values also represent the values on the node. The numerical fluxes of a high order

scheme are

F̂Fjþ1=2 ¼ F̂F ðU�
jþ1=2;U

þ
jþ1=2Þ; F̂Fj�1=2 ¼ F̂F ðU�

j�1=2;U
þ
j�1=2Þ: ð9Þ
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On the conservative property, these high order approximations are always conserved pertaining to the local

mean on the cell, i.e. �UUn
j ¼ ð1=DxÞ

R xjþ1=2

xj�1=2
UnðxÞdx. For second-order schemes, the linear interpolation

approximations shown in Eq. (8) automatically ensure cell average values are conserved.

3.2. CE/SE method

The CE/SE method [1] is a non-Riemann-solver type conservative scheme and has second-order accu-

racy in both time and spatial directions. In the CE/SE method, the time integration is performed on a

staggered grid and each full time step (satisfying Eq. (5)) is divided into two half time steps. From the initial

conditions, smooth regions are defined in the cells near the nodes, such as ðxj�1=2; xjþ1=2Þ, with the linear

profiles of Eq. (8). When the first half time step is calculated, the cell is shifted by Dx=2, which is equivalent

to defining for the region between nodes, such as ðxj; xjþ1Þ; hence new cell average values �UUn
jþ1=2 are defined.

As the values at the nodes are smooth with first-order derivatives, the fluxes on the new cell walls are

physical. Hence, a conservative scheme similar to Eq. (4) can be written as

�UUnþ1=2
jþ1=2 ¼ �UUn

jþ1=2 �
k
2

F ðUnþ1=4
jþ1 Þ

h
� F ðUnþ1=4

j Þ
i
; ð10Þ

where �UUnþ1=2
jþ1=2 are the cell average values after the first half time step , F ðUnþ1=4

jþ1 Þ and F ðUnþ1=4
j Þ are the

physical fluxes on node points at time ðnþ 1=4ÞDt. After the first half time step, the linear profile near

jþ 1=2 is then constructed by a weighted average interpolation approach with the new cell average values
�UUnþ1=2
jþ1=2 and the new node point values Unþ1=2

jþ1 and Unþ1=2
j at time ðnþ 1=2ÞDt. The values Unþ1=4

j and Unþ1=2
j at

each node point are defined by the first-order Taylor expansion

Unþn
j ¼ �UUn

j þ nDt
oU
ot

� �n

j

; ð11Þ

where n ¼ 1=2 or 1=4. With the relation of Eq. (1) and linear approximation, Eq. (11) can be written as

Unþn
j ¼ �UUn

j � nk F ðU�
jþ1=2Þ

h
� F ðUþ

j�1=2Þ
i
; ð12Þ

where U�
jþ1=2 and Uþ

j�1=2 are the initial cell wall values which are given by a linear profile such as Eq. (8).

When the second half time step is calculated, the difference form can be written in a similar way as for Eq.

(10), but all the terms are shifted by Dx=2 spatially. After a full time step, the cell locations are shifted back

to the original locations again.
4. Case study of low internal energy flows: ‘‘1–2–3 problem’’

The ‘‘1–2–3 problem’’ [18] gives a series of Riemann problems for an ideal gas

Uðx; 0Þ ¼ Ul if x < x0;
Ur if x > x0;

�
ð13Þ

where the two constant initial conservative variables are Ulð1;�2;E0Þ and Urð1; 2;E0Þ and total energy

E0 > 2. E0 can be changed according to the different initial internal energy ratio. According to Smoller [15],

if the initial internal to kinetic energy ratio K0 P 1
7
(E0 P 16

7
), the theoretical solution consists of two rar-

efaction waves propagating in opposite directions and a static low density region exists between the rar-

efaction regions. As K0 decreases, the density of the static region decreases. If the initial internal energy

ratio K0 6
1
7
, a vacuum occurs in the solution. However, there arises difficulties for numerical methods when
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the initial condition is far less critical than a vacuum solution. Einfeldt et al. [3] found that, if K0 6 4

(E0 6 10), the solution is not linearizable and may lead to numerical difficulties. In this paper, four com-

monly used high order conservative schemes are tested:
• Second-order MUSCL Hancock scheme (MUSCL) [13].

• Third-order ENO-LF scheme (ENO) [14].

• Fifth-order WENO-LF scheme (WENO) [7].

• Second-order CE/SE method (CE/SE) [1].

First, a case which has also been considered by Cocchi et al. [2] is tested. The initial total energy and in-

ternal energy ratio are E0 ¼ 6 and K0 ¼ 2. Here, the initial condition is much less critical than that asso-

ciated with a vacuum solution. While the ENO scheme and the WENO scheme have no difficulty for

various CFL numbers used, both the MUSCL scheme and the CE/SE method �explode� or grow uncon-
trollably in the presence of negative internal energy when the CFL number of 0.9 is applied. Because of this,

lower CFL numbers of 0.5 and 0.8 are used, respectively. Fig. 1 shows the calculated pressure, density,
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Fig. 1. Pressure, density, velocity and temperature profiles at t ¼ 0:1 obtained by various numerical methods.



Table 1

Requirement of CFL number for the four numerical schemes with different E0
a

E0=K0 MUSCL Hancock-2 ENO-LF-3b WENO-LF-5b CE/SE-2

8.0/3.0 0.9 0.9 0.9 0.9

6.0/2.0 0.5 0.9 0.9 0.8

3.0/0.5 – 0.9 0.9 0.6

2.5/0.25 – 0.9 0.9 0.4

2.25/0.125c – 0.7 0.7 0.3

a It does not necessarily imply that the solution is accurate compared to analysis.
bUsually, a CFL number bigger than 0.8 is not recommended.
cA vacuum occurs in exact solution.
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velocity and temperature profiles at time t ¼ 0:1. For all the flow variables considered, it is found that all

the four schemes give reasonable results for the rarefaction regions. By comparing the low temperature and

low density static region at the center of the domain with the exact solution, all the four schemes show

much larger deviations than for the rarefaction regions. One can still discern the CE/SE method gives the

smallest errors, especially for the temperature and density distributions. The ENO and WENO schemes

give the largest deviations; further numerical tests on the ENO and WENO show results with smaller CFL

number, even at 0.1, the errors cannot be reduced much (not shown here). For the MUSCL scheme, the
predicted temperature is comparatively much lesser, however the deviation is still much larger than of the

CE/SE method. From the above, one can suggest that the CE/SE method gives the best solution, which

predicts the density fairly accurately and considerably reduces the increase of the temperature in the static

region. It may be noted that these results by the CE/SE method are already better than that shown by

Cocchi et al. [2] with non-conservative modifications.

However, the CE/SE method must be computed with smaller CFL number to keep the internal energy

positive, just as for the MUSCL scheme. Table 1 shows the nominally initial conditions of imposed largest

CFL number which can be used with the different internal energy ratio for the four schemes such that
subsequent computations can continue and still maintain a strictly non-negative internal energy. From

Table 1, it is clear that the MUSCL scheme shows the poorest ability to keep the internal energy positive. It

�explodes� when K0 ¼ 1 or smaller, even when the CFL number is decreased to a very small value such as

0.1. The CE/SE method behaves better, but the CFL number also shows a need to be decreased as the initial

internal energy ratio decreases. The ENO and WENO schemes are much more robust than both the

MUSCL and CE/SE schemes; numerical results show that the ENO and WENO schemes can maintain

positivity with much larger CFL number than that in Perthame and Shu [12]. On the other hand, the results

of the second-order MUSCL scheme and CE/SE scheme in particular seem to exhibit higher accuracy for
such low internal energy flows.

The above results show, for these conservative schemes, positivity and accuracy are difficult to be

maintained at the same time. In the following section, the positivity of second-order Riemann-solver type

schemes and the CE/SE method are analyzed to show that the difficulties/problems associated with low

internal energy is mainly caused by energy consistency failure. A kinetic energy fix method is then proposed

to ensure the positivity property while still maintaining reasonably large fixed CFL number and high

accuracy at the same time.
5. Analysis of low internal energy flows

As the MUSCL scheme and CE/SE method have no difficulty in maintaining positive internal energy for

the ‘‘1–2–3 problem’’ if they degenerate to the first-order forms, and the main difference between the high
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order conservative scheme and first-order scheme is the interpolations used to predict the profiles inside the

computational cell j concerned, it is quite logical to study how the interpolations affect the positivity

property.

5.1. Positivity property of Riemann-solver type schemes

Theorem 1. Assume the first-order form of a Riemann-solver type conservative scheme satisfies the positivity

property under a CFL condition of Eq. (7). If the numerical flux is defined by Eq. (9) and the cell wall values

take on positive density and pressure, the full second-order scheme is positivity preserving under the CFL

number condition

NCFL <
1

2
a0: ð14Þ
Remark 1. This theorem is similar to Theorem 1 in [12]. However, it further ensures the positivity of a

second-order scheme under a fixed CFL number without any other constraint than the cell wall values.

Remark 2. For third or higher order schemes, if the numerical flux is defined with cell wall values, similar

results to Theorem 1 in Perthame and Shu [12] can also be obtained. However, the positivity cannot be

ensured under the conditions in Theorem 1.

Proof. For a second-order scheme, the conservative variables in the cell j can be approximated by Eq. (8).

The cell average values and cell wall values always have the relation

�UUj ¼
1

2
ðU�

jþ1=2 þ Uþ
j�1=2Þ: ð15Þ

Hence, Eq. (4) can be written as

�UUnþ1
j ¼ 1

2
U�

jþ1=2

n
� 2k F̂F ðUþ

jþ1=2;U
�
jþ1=2Þ

h
� F̂F ðU�

jþ1=2;U
þ
j�1=2Þ

io

þ 1

2
Uþ

j�1=2

n
� 2k F̂F ðU�

jþ1=2;U
þ
j�1=2Þ

h
� F̂F ðUþ

j�1=2;U
�
j�1=2Þ

io
ð16Þ

to give a linear combination of two first-order schemes. As these two first-order schemes have positive

property while U�
jþ1=2 and Uþ

j�1=2 assume positive density and pressure under the condition of Eq. (14),

Eq. (16) implies that �UUnþ1
j has the same positivity property for pressure, which is indeed a concave function

of U . �

5.2. Positivity property of the CE/SE method

Theorem 2. If the cell wall values of the initial condition satisfy positive density and pressure, the CE/SE

method preserves positivity without further time step restriction than Eq. (5).

Remark 1. As the CE/SE method usually prefers and allows for large CFL number for computation, this

theorem implies that the same CFL number as applied in higher internal energy region can be used in the

low internal energy region of the same computational domain.

Remark 2. The positivity property for the second order in time discretization is also enforced directly by

this theorem.
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Proof. As the two half steps of the CE/SE method have the same difference form, we only need to prove the

positivity condition for the first half step. One can find the condition is equivalent to ensuring that �UUnþ1=2
jþ1=2 ,

Unþ1=4
j and Unþ1=2

j have positive density and pressure from Eqs. (10) and (12).

For Eq. (10), it can be written as the linear combination of two exact solvers

�UUnþ1=2

jþ1=2 ¼ 1

2
�UUjþ1=2 �

k
2

F ðUnþ1=4
jþ1 Þ

�
� F

1

2
�UUjþ1=2

� ��
þ 1

2
�UUjþ1=2 �

k
2

F
1

2
�UUjþ1=2

� ��
� F ðUnþ1=4

j Þ
�
: ð17Þ

Since the two exact solvers preserve positivity, Eq. (17) implies that, when �UUjþ1=2, and Unþ1=4
j for every node

satisfy positive density and pressure, �UUnþ1=2
jþ1=2 has the same property. As Eq. (17) is calculated only for a half

time step, the interaction of waves for the exact solvers can be avoided; this indicates that the CE/SE

method has positivity property for the first half time step without further CFL number restriction.

For �UUjþ1=2, with relations as specified in Eq. (8), we always have

�UUjþ1=2 ¼
1

4
ð �UUj þ U�

jþ1=2 þ �UUjþ1 þ Uþ
jþ1=2Þ; ð18Þ

where U�
j�1=2 are the two cell wall values from the initial condition. As this equation is a linear combi-

nation of conservative variables, we need only to ensure the cell wall values satisfy positive density and

pressure. On the other hand, we need Unþ1=4
j for every node to satisfy positive density and pressure, and we

also require the values Unþ1=2
j for every node to have the same property for the linear constructions as used

in the second half time step. Similarly, Eq. (12) can also be transformed into the combination of two exact

solvers

Unþn
j ¼ 1

2
�UUj � nk F ðU�

jþ1=2Þ
�

� F
1

2
�UUj

� ��
þ 1

2
�UUj � nk F

1

2
�UUj

� ��
� F ðUþ

j�1=2Þ
�
: ð19Þ

Eq. (19) has similar form as Eq. (17) and thereby ensures positivity for Unþ1=2
j when the cell wall values

U�
j�1=2 satisfy positive density and pressure. As Unþ1=4

j is equivalent to the solution of Eq. (19) at

t ¼ ðnþ 1=4ÞDt, the condition that preserves positivity for Unþ1=2
j also satisfies for Unþ1=4

j for the smaller

time step of Dt=4.
From the above analysis, we can conclude that (a) the CE/SE has positivity property without further

CFL number restriction, (b) the positivity condition is that the cell wall values satisfy positive density and

pressure. �
5.3. Energy consistency conditions

For a positive preserving scheme, as the cell average values at the nth time step ensure positive density
and pressure, from Eq. (3) these conservative variables are energy consistent; that is K > 0. Hence, we

have

1

2

ð �ququÞ2j
�qqj
�EEj

< 1: ð20Þ

From the analysis of positivity properties, one can find that besides the CFL number constraint, the cell

wall values are also required to take on positive density and pressure for preserving positivity on the new
cell average values. For second-order schemes, as the density is interpolated from the near cell average

values with minmod, weighted average or other limiters, the cell wall density is bounded by these near cell

average values and always be positive. Therefore, one only needs to maintain the energy consistency for

these cell wall conservative variables, i.e.
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1

2

ð �ququj � kqudÞ2

ð�qqj � kqdÞð �EEj � kEdÞ
< 1; ð21Þ

where d ¼ Dx=2. If the cell wall values are energy consistent with positive density and pressure, the value at

location �e, d > e > 0, in the cell can be written as

Uð�eÞ ¼ d� e
d

�UUj þ
e
d
U�

j�1=2: ð22Þ

One can then find that the conservative variables at every location inside the cell have the same property.

Hence, the energy consistency condition for the whole cell is satisfied by

1

2 �EEj

Z xjþ1=2

xj�1=2

ðquÞ2

qDx
dx < 1: ð23Þ

The integral on the left-hand side is the cell average kinetic energy, which can be calculated/expressed

numerically by different approximations. One of the possible (approximated) energy consistency condition

can be simply written as

1

2

ð �ququÞ2j þ k2qud
2

�qqj
�EEj

< 1: ð24Þ

By comparing Eq. (24) to (20), one can find that, for a second-order scheme, the whole cell has an addi-

tional kinetic energy term, k2quDx
2, compared to that of the cell average value.
6. Kinetic energy fix method

From the discussions in the last section, one can observe that the kinetic energy is non-physical when the

energy consistency condition of Eq. (21) or (23) is not satisfied. Hence, the jkquj as utilized in Eq. (8) is larger
than that of a real physical profile existing at the cell. Therefore, a kinetic energy fix can be proposed to

control the kinetic energy level for a physically reasonable profile. By comparing Eq. (20) to (21) or (23),

one can suggest that the magnitude of kinetic energy, density and total energy be fixed/limited to enforce or

ensure energy consistency condition required for a positive pressure. In practice, the fixes can be proposed

based on energy consistency condition for the cell wall values or the whole cell values. If the kinetic energy

fix is based on the the cell wall values, we can limit all the kqu; kq; kE at the same time by introducing a

parameter 1 > a > 0 to Eq. (21). That is, we solve for the equation

1

2

ð �ququj � akqudÞ2

ð�qqj � akqdÞð �EEj � akEdÞ
< 1 ð25Þ

to obtain a and then fix the slopes via

k0q < akq; k0qu < akqu; k0E < akE: ð26Þ

If the kinetic energy fix is based on the whole cell values, similarly a parameter 1 > b > 0 can be introduced

to Eq. (24) so that

1

2

ð �ququÞ2j þ b2k2qud
2

�qqj
�EEj

< 1: ð27Þ
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We solve for b and the slopes are fixed via

k0q < bkq; k0qu < bkqu; k0E < bkE: ð28Þ

Even as Eqs. (26) and (28) suggest the bounds for the slopes, usually a slightly larger a or b, i.e. 1:1a � 1:3a
or 1:1b � 1:3b, can be used to achieve even better results. It is noted that the above fixes, Eqs. (26) and (28),

are only applied to those cells which did not satisfy the energy consistency conditions caused by interpo-
lations for non-physical profile. The accuracy in the smooth region is still preserved. It is also noted that

there may be other kinetic fix methods derived from Eq. (21) and (23); for example one of the alternative fix

method is further outlined in Appendix A. However, our numerical results show the present simple fix

method is sufficient for a large range of low internal energy flows even when a vacuum occurs.

As the kinetic energy fix methods from Eqs. (25)–(28) are not scheme specific and many second-order

conservative schemes have a linear slope prediction step, the said methods may be applicable to different

schemes easily. The detailed procedure can be given as follows:
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Fig. 2. Sod�s problem at t ¼ 0:2.



X.Y. Hu, B.C. Khoo / Journal of Computational Physics 193 (2003) 243–259 253
1. Give a further time step restriction by Eq. (14) if needed.

2. Compute the average conservative variables ð�qqj; ð �ququÞj; �EEjÞ of the cell, and derivatives kq, kqu and kE at the

cell center.

3. Check the energy consistency by Eq. (21) or (24).
4. Modify the derivatives at the cell center by Eq. (26) or (28) if needed.

5. Use the modified derivatives k0q, k
0
qu and k0E for the new time or half time step.
7. Numerical examples

As an application, the kinetic energy fix method is implemented into the CE/SE method. The following

examples, including Sod�s problem, Lax problem and ‘‘1–2–3 problem’’ series, illustrate the compatibility of
the kinetic energy fixed CE/SE method (denoted as CE/SE-M-1 for Eq. (26) and CE/SE-M-2 for Eq. (28))

with its original form and further demonstrate the ability of the said method to handle the potential

difficulties of low internal energy flows. For all the test cases, the number of grid points is 200 and the

referenced exact solution is sampled on 100 grid points.
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Fig. 3. Lax�s problem at t ¼ 0:14.
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7.1. Compatibility of the kinetic energy fixed method

Here, we show the results for the two well-known problems with shock waves, rarefaction waves and
contact discontinuities. This is to test the compatibility of the kinetic energy fixed CE/SE method. The first

problem is due to Sod [16]. The initial conservative variables are

Uðx; 0Þ ¼ ð1; 0; 2:5Þ if x < 0:5;
ð0:125; 0; 0:3125Þ if x > 0:5:

�
ð29Þ

The second one is the Riemann problem proposed by Lax [8]. The initial conservative variables are

Uðx; 0Þ ¼ ð10:445; 0:311; 8:928Þ if x < 0:5;
ð0:5; 0; 1:4275Þ if x > 0:5:

�
ð30Þ
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Fig. 4. E0 ¼ 6=K0 ¼ 2 at t ¼ 0:1.
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These two problems, especially Lax�s problems, are considered as benchmark tests. The numerical results

for both the CE/SE method with and without kinetic energy fix, denoted by CE/SE, CE/SE-M-1 and CE/

SE-M-2, are presented in Figs. 2 and 3. Even for such non-characteristic-based schemes, one can see that all
the methods give identical solutions with good and reasonable accuracy.

We have also tested Woodward and Colella�s case [19], Shu–Osher�s case [14] and the slowly moving

shock problem of Quirk [13]. As with the high internal energy ratio in these problems, CE/SE, CE/SE-M-1

and CE/SE-M-2 always give identical and correct solutions. These results are not presented here.

7.2. Low internal energy flows

As in Section 4, we also use the ‘‘1–2–3 problem’’ series to test the ability of the kinetic fixed CE/SE

method for low internal energy flows. Among the MUSCL, ENO, WENO and CE/SE schemes without

kinetic energy fix, the CE/SE method is found to be the most effective. Therefore, the comparisons pre-

sented next are mainly confined to between the solutions of the fixed and original CE/SE method.
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Fig. 5. E0 ¼ 3=K0 ¼ 0:5 at t ¼ 0:1.
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7.2.1. E0 ¼ 6=K0 ¼ 2

In Section 4, one can find the original CE/SE works with CFL number 0.8. With a CFL number of 0.9,

the results of the fixed method are shown in Fig. 4.

By comparing the solution of the original CE/SE, one can find the solutions of the both original and

fixed methods are almost identical. Furthermore, one can also find that both the CE/SE-M-1 and CE/

SE-M-2 give better solutions, such as the less non-physical temperature increase at the center of the

domain.

7.2.2. E0 ¼ 3=K0 ¼ 0:5
This is a test of increasing difficulty with extreme condition where the MUSCL scheme �explodes� even

with a very small CFL number of 0.1. For the original CE/SE method, it can still compute at a CFL

number of 0.6, but gives rise to serious oscillations for the velocity profile. Only by reducing the CFL

number to 0.4, the oscillations are decreased to a more manageable situation, as shown in Fig. 5. For the

CE/SE-M-1 and CE/SE-M-2, the problem can be solved with a CFL number of 0.9. The numerical results
++++++++++++++++++++++++++++++++++++++++++++++++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++

++++
+++
++
++
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+++++++++++++++++++++++++++++++++++++++++++++++------------------------------------------------

-

-

-

-

-

-

-

-

-

-
-
-
-
-
-
-
-
----------------------------------------------------------

----
---
--
--
-
-
-
-
-
-
-
-
-

-

-

-

-

-

-

-

-

-
------------------------------------------------

Distance

Pr
es
su
re

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

CE/SE
Exact
CE/SE-M-1
CE/SE-M-2

+
-

++++++++++++++++++++++++++++++++++++++++++++++++++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++

+

+

+

+

+
++
+

+

+

+

+
+++++++

++
+++
++++++++

++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
+++++++++++++++++++++++++++++++++++++++++++++++--------------------------------------------------

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
------------------

-----
--
-
-
-
-
-
----
-
-
-
-
-----------------------

--
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--
------------------------------------------------

Distance

Te
m
pe
ra
tu
re

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

CE/SE
Exact
CE/SE-M-1
CE/SE-M-2

+
-

+++++++++++++++++++++++++++++++++++++++++++++++++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++++++

+++++
+++
++
++
+
+
+
+
+
+
+
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++++++++++++++++++++++++++++++++++++++++++++++++-------------------------------------------------

-
-

-

-

-

-

-

-

-

-
-
-
-
-
-
-
-
-
-
-
-
-------------------------------------------------

----
---
--
--
--
-
-
-
-
-
-
-
-
-
-
-
-

-

-

-

-

-

-

-

-
-
------------------------------------------------

Distance

D
en
si
ty

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

e     

CE/SE
Exact
CE/SE-M-1
CE/SE-M-2

+
-

+++++++++++++++++++++++++++++++++++++++++++++++++++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
+++
+++++++

++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++
++++++++++++++++++++++++++++++++++++++++++++++++++

---------------------------------------------------
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-----------

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
----
-----------------------------------------------

Distance

Ve
lo
ci
ty

0 0.2 0.4 0.6 0.8 1-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

CE/SE
Exact
CE/SE-M-1
CE/SE-M-2

+
-

Fig. 6. E0 ¼ 2:5=K0 ¼ 0:25 at t ¼ 0:1.
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in Fig. 5 show that the fixed methods produce accurate density profile as compared to the over-prediction

by the original method. It may be noted that the calculated density profiles with kinetic energy fix are even

better that those obtained by second-order positivity preserving kinetic schemes [4,10]. The velocity profiles
are computed without oscillation in contrast to the result by the original CE/SE method. However, as this

case is considered as one with extreme condition, the fixed CE/SE method still predicts a high non-physical

temperature profile in the central region; it presents a peak temperature magnitude of close to 0:4 and 0:5
for the CE/SE-M-1 and CE/SE-M-2, respectively. Even then, these results are better than that of the ENO-

LF and WENO-LF schemes, in which the temperature is higher than 0.8 (not shown here).

7.2.3. E0 ¼ 2:5=K0 ¼ 0:25
As the initial internal energy ratio is 0.25, the exact solution for this problem is getting very close to that

with a vacuum solution. A CFL number of 0.4 is needed for the original CE/SE method while the fixed

method can still compute with a CFL number of 0.9. The results in Fig. 6 show a more accurate velocity

profile without oscillation and a smaller non-physical temperature increase are obtained with both the CE/

SE-M-1 and CE/SE-M-2. On the other hand, as larger time step is permitted, the fixed method is able to
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Fig. 7. E0 ¼ 2:25=K0 ¼ 0:125 at t ¼ 0:1.
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compute for the rarefaction waves more accurately especially near the rarefaction wave ends where density

and pressure decrease with large gradient (see Fig. 6).
7.2.4. E0 ¼ 2:25=K0 ¼ 0:125
This is the most critical test case among all the cases presented here. As the initial energy ratio is only

0.125, a vacuum occurs in the solution. Without kinetic energy fix, this case can only be computed with a

CFL number of 0.3 by the original CE/SE method, and the computation can even not proceed with a

CFL number of 0.9 for the most robust ENO and WENO schemes. For the fixed method, the compu-

tation can proceed without difficulty at the CFL number of 0.9. The results, as seen in Fig. 7, still enable a

more accurate density and pressure profiles in the rarefaction wave regions. However, as a vacuum occurs,

the solution at the center of the domain have strictly no physical meaning. For example, the zero velocity
at the domain center results from the absence of gaseous material rather than the flow having a zero

velocity.
8. Concluding remarks

For kinetic flows with low internal energy ratio, the high order conservative schemes may not ensure

positive internal energy as do for their first-order forms or produce inaccurate results in contrast to flows
with higher internal energy. Based on analysis of the positivity property for high order schemes for the cases

which permit fixed large CFL number restriction, we have obtained the energy consistency conditions

required for the existence of positive pressure for second-order Riemann-solver type schemes and CE/SE

method. A kinetic energy fix method applicable for a general second-order scheme is proposed to ensure

compliance of the energy consistency conditions for the flow problems with low internal energy. The results

of the numerical examples show that the kinetic energy fix CE/SE method exhibits greater robustness and

accuracy when computing flows with very low internal energy or even a vacuum. As the kinetic energy fix is

only employed when the energy consistency conditions are violated for the particular cell wall or whole cell
values, it is able to preserve uniform second-order accuracy for other regions.
Appendix A. An alternative kinetic energy fix method

If the energy consistency condition of Eq. (23) is not satisfied thereby indicating a non-physical profile,

one can suggest a parameter

W ¼ 1

2 �EEj

Z xjþ1=2

xj�1=2

ðquÞ2

qDx
dx ðA:1Þ

to determine the extent or measurement of this departure when W P 1. Hence W can be used for limiting

the kinetic energy quantity. Here, the kinetic energy fix is proposed as

kfix ¼
k

1þ a0W b0
; ðA:2Þ

where k and kfix are the original and the fixed slope for interpolation, a0 and b0 are two positive parameters.

The kinetic energy fix makes the effective jkj smaller to satisfy a possible real physical profile especially when

W is close to 1 or larger. The parameter a0 determines the influence of W on jkj while the parameter b0

controls the fixing rate. For many flow phenomena, the ratio of kinetic energy to total energy W is much

smaller than 1. For such cases, it is found that jkj is almost not affected by Eq. (A.2). Usually, only kqu is
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fixed by Eq. (A.2) and is sufficient. Sometimes, such as when a near vacuum solution occurs, kq, kqu and kE
are all fixed simultaneously in order to achieve even better energy consistency properties. For the CE/SE

method, when Eq. (A.1) is approximated as

W ¼ 1

2

ð �ququÞ2j þ ak2qud
2

�qqj
�EEj

; ðA:3Þ

where a ¼ 1=2 and d ¼ Dx=2, it is found that setting a0 ¼ 0:1 and b0 ¼ 3:0 can give reasonable results for a

large range of internal to kinetic energy ratio and applicable to those examples in Section 7 (results not

shown here).
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